熱風爐燃燒控制系統(tǒng)的運用和原理為熱動力機械的
燃氣熱風爐于20世紀70年代末在我國開始廣泛應用,它在許多行業(yè)已成為電熱源和傳統(tǒng)蒸汽動力熱源的換代產(chǎn)品。通過長時間的生產(chǎn)實踐,人們已經(jīng)認識到,只有利用熱風作為介質(zhì)和載體才能更大地提高熱利用率和熱工作效果。傳統(tǒng)電熱源和蒸汽熱動力在輸送過程中往往配置多臺循環(huán)風機,使之最終還是間接形成熱風進行烘干或供暖操作。這種過程顯然存在大量浪費能源及造成附屬設(shè)備過多、工藝過程復雜等諸多缺點。而更大的問題是,這種熱源對于那種需要較高溫度干燥或烘烤作業(yè)的要求,則束手無策。針對這些實際問題經(jīng)過多年潛心研究,終于研制出深受國內(nèi)外用戶歡迎的JDC系列螺旋翅片管換熱間接式熱風爐和JDC系列高凈化直接式熱風爐。
目前,我國絕大多數(shù)熱風爐的燃燒控制主要還是采用手動控制,煤氣流量和空氣流量的大小由人工憑經(jīng)驗手動調(diào)節(jié),因此,供熱溫度波動較大,對熱風爐的壽命也有很大影響,并造成煤氣的巨大浪費。傳統(tǒng)控制方法主要有比例極值調(diào)節(jié)法和煙氣氧含量串級比例控制法,但是由于不能及時改變空燃比,不易實現(xiàn)熱風爐的最佳燃燒,且測氧儀器成本高、難以維護,因此,實際使用效果不太理想;數(shù)學模型法能將換爐、送風結(jié)合為一體,但由于檢測點多,在生產(chǎn)條件不夠穩(wěn)定、裝備水平較低的熱風爐中不易實現(xiàn);人工智能方法主要有神經(jīng)網(wǎng)絡和模糊控制,神經(jīng)網(wǎng)絡控制對熱風爐燃燒過程有極強的自學習能力,但抗干擾能力較弱,而模糊控制不需數(shù)學模型,有較強的抗干擾能力且易于實現(xiàn),因此尤其適用于熱風爐這類難以確切描述的非線性系統(tǒng)。
1 熱風爐燃燒控制系統(tǒng)
1.1
熱風爐的燃燒過程
燃燒過程對應著蓄熱室的蓄熱過程,它分為加熱期和拱頂溫度管理期。當拱頂溫度上升到一定值后,需要保持拱頂溫度維持在這個定值,此時拱頂幾乎不再吸收廢氣的熱量,而廢氣的熱量主要被蓄熱室中下部所吸收。從廢氣管道排出的廢氣,它的溫度比較低時,說明熱風爐的熱交換效率比較高,反之,熱交換效率比較低。因此,在拱項溫度達到一定值后,合理控制廢氣的溫度上升速率對熱風爐的燃燒顯得尤其重要。
1.2 熱風爐燃燒控制的基本思想
加熱期拱頂溫度的上升速率和進入拱頂溫度管理期廢氣溫度的上升速率,主要取決于燃燒過程的空燃比和煤氣流量,同時還受煤氣、空氣質(zhì)量和壓力波動的影響。實現(xiàn)熱風爐燃燒過程自動控制的關(guān)鍵是隨著煤氣、空氣壓力和質(zhì)量的波動及熱風爐燃燒狀態(tài)的變化對煤氣
流量和空氣流量進行實時調(diào)整,空氣流量的調(diào)整可以轉(zhuǎn)化為對空燃比的調(diào)整。故在加熱期,可以最大空氣流量進行加熱,據(jù)此來調(diào)整合適的煤氣流量或者以最大煤氣流量進行加熱,并調(diào)整合適的空燃比,迅速提高拱頂溫度;到達拱頂溫度管理期,適當減小煤氣流量,并調(diào)整合適的空燃比,保證拱頂溫度不變的情況下,提高廢氣的升溫速率。熱風爐燃燒控制系統(tǒng)結(jié)構(gòu)如圖1所示。
利用狀態(tài)辨識器可以判斷熱風爐是處于加熱期還是拱頂溫度管理期,并且跟蹤判斷廢氣的溫度是否達到設(shè)定值,以此選擇不同燃燒階段的模糊控制器(FC)。
模糊控制在工業(yè)、農(nóng)業(yè)、家用電器等各個方面已經(jīng)獲得許多成功的應用,本文將其運用于熱風爐控制系統(tǒng)。根據(jù)熱風爐自動化控制的要求及熱風爐燃燒控制的特性,考慮了國內(nèi)熱風爐基礎(chǔ)自動化的現(xiàn)狀對熱風爐燃燒控制系統(tǒng)進行了設(shè)計。在系統(tǒng)中應用了模糊控制理論,并應用模糊控制技術(shù)設(shè)定最佳空燃比和煤氣流量,以達到最佳燃燒控制的目的。
本文設(shè)計的最佳空燃比模糊控制器,涉及熱工參量少,對煤氣熱值、殘氧量的檢測不作要求,繞開了控制中的建模困難的問題,通過仿真結(jié)果與現(xiàn)場實際比較,提高了燃料的利用率,節(jié)約能源,而且比采用傳統(tǒng)控制方法的燃燒過程更加穩(wěn)定,能安全平穩(wěn)地給高爐提供盡可能高溫的熱風,不像基于熱風爐數(shù)學模型的一些控制方法對軟、硬件要求那樣高,投入成本較低,適合熱風爐廠家自動控制的要求。